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Abstract

We use the forced complex Ginzburg-Landau (CGL) equation to study resonance in
oscillatory systems periodically forced at approximately twice the natural oscillation fre-
guency. The CGL equation has both resonant spatially uniform solutions and resonant two-
phase standing-wave pattern solutions such as stripes or labyrinths. The spatially uniform
solutions form a tongue-shaped region in the parameter plane of the forcing amplitude and
frequency. But the parameter range of resonant standing-wave patterns does not coincide
with the tongue of spatially uniform oscillations. On one side of the tongue the boundary
of resonant patterns is inside the tongue and is formed by the Nonequilibrium Ising Bloch
bifurcation and the instability to traveling waves. On the other side of the tongue the reso-
nant patterns extend outside the tongue forming a parameter region in which standing-wave
patterns are resonant but uniform oscillations are not. The standing-wave patterns in that
region appear similar to those inside the tongue but the mechanism of their formation is
different. The formation mechanism is studied using a weakly nonlinear analysis near a
Hopf-Turing bifurcation. The analysis also gives the existence and stability regions of the
standing-wave patterns outside the resonant tongue. The analysis is supported by numerical
solutions of the forced complex Ginzburg-Landau equation.
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1 Introduction

Resonance phenomena in forced oscillatory systems have mostly been studied in
the context of a single oscillator such as the pendulum [1-3]. The resonant behavior
is manifested by the ability of the system to adjust its natural oscillation frequency
to a rational fraction of the forcing frequency. Thus, the system may respond, or
lock, in ratiosl/n (n = 1,2, 3, ...) of the forcing frequency and at additional frac-
tions determined by the Farey hierarchy [4]. The natural frequency range, where
the system locks to the forcing frequency, increases with the forcing amplitude and
forms a tongue-shaped region (Arnol'd tongues) in the amplitude-frequency plane.
The parameter region pertaining to oscillations at the forcing frequency is oc-
casionally referred to as the: 1 resonance tongue.

More recently resonance phenomena have been studied in spatially extended sys-
tems using uniform time periodic forcing [5—-21]. These systems demonstrate an-
other property of resonance phenomena; although any spatial point in the system
oscillates at the same fractidrin of the forcing frequency, the phase of oscillation
may assume one of different values and may vary from one spatial domain to
another [8,22]. In the 2:1 resonance there are two stable phases of oscillations (dif-
fering from one another by) and fronts that shift the oscillation phase bynay
appear. In the 4:1 resonance there are four stable phases and two types of fronts
may appear; fronts can shift the oscillation phases by eitharz /2. Along with

these fronts spatial patterns, such as spiral waves and standing-wave labyrinths,
may appear [10,12,20].

In this paper we study to the 2:1 resonance case and the conditions for resonant be-
havior in spatially extended systems as compared with those of a single oscillator.
The study is based on a variant of the complex Ginzburg—Landau (CGL) equation
which describes the dynamics of the oscillation amplitude near the Hopf bifurca-
tion. Among our findings are non-resonant patterns in a range of resonant uniform
oscillations and resonant patterns in a range where uniform oscillations are not res-
onant. The results derived in this paper extend the analytical and numerical results
presented in Ref. [20].

The paper is organized as follows. In Section 2 we derive the boundaries of the
2:1 resonance tongue for uniform oscillations. This is the domain where the system
is bistable and front solutions may exist. In Section 3 we study two front instabil-
ities and the patterns that arise from them. The results are used to determine the
range where resonant patterns appear inside the 2:1 resonant tongue of uniform os-
cillations. In Section 4 we determine the conditions for the prevalence of resonant
standing wavesutsidethe resonance tongue and show that the formation mech-
anism differs from that of standing waves inside the tongue. We conclude with a
summary and a discussion of the results in Section 5.



2 The 2:1 resonance tongue

Consider an extended system undergoing a Hopf bifurcation to uniform oscillations
atafrequency2. The systemis now uniformly forced at a frequengy~ 2(2. Near
the Hopf bifurcation a typical dynamical variable of the system can be written as

u = ug+ [Aem + c.c.] + ..., Q)

whereuy is the value of. when the system is at the rest state undergoing the Hopf
bifurcation, A is a complex amplitudey := w¢/2, c.c. stands for the complex
conjugate, and the ellipses denote higher order terms. The amplitude of oscillation
A 'is slowly varying in space and time and for weak forcing is described by the
forced CGL equation [23—26]

QA= (u+iv)A+ (1 +ia)VZA— (1 +iB)|AIPA +vA*. 2)

In this equation: represents the distance from the Hopf bifurcatior; (2 — w;/2

is the detuningq represents dispersiof,represents nonlinear frequency correc-
tion, v is the forcing amplitude, and? is two-dimensional Laplacian operator. The
term A* is the complex conjugate of and describes the effect of the weak periodic
forcing [23]. Throughout this paper we will mostly be concerned with Eq. (2) for
the amplitude of oscillations. The oscillating system in Eq. (1) will be referred to
as the “original system.”

To find the resonance boundary of uniform oscillations we wifite- R exp (i¢)
and consider uniform solutions of Eqg. (2). The amplitdiRl@nd the phase obey
the equations

R=uR —R®+ R cos2¢, (3a)
d=vR — BR> — vR sin 2¢. (3b)
In 2:1 resonance the system oscillates at exactly half of the forcing frequency. Ac-

cording to Eqg. (1) this condition is satisfied by stationary solution®adnd ¢.
These solutions appear in a pair of saddle node bifurcatiops-at,, [7], where

W= @

as Fig. 1(a) shows. The form of the resonance boundary changes to

W= 1+ (1 — 20)2/2

for v < p(B* — 1)/(20) (assuming3? > 0 which is used here). For further details
see Ref. [27]. The two stable solutions are given by



o= 5 arcsin ————, (5a)

=0+, (5b)

whereji = (u+v3)/(1+32),7 = \/7?/(1+ 37) — 72, andi = (v—pp)/(1+6?).

We refer to the solutions_ and¢, as “phase locked” solutions or “phase states.”
The existence range of these solutions> ~,, forms a V-shape region, here-
after the “2:1 resonance tongue.” The 2:1 resonance tongue fof) is shown in

Fig. 1(b). For # 0 the tongue gets wider and is shifted to the right{ 0) or to

the left(5 < 0). Outside the resonance tongue uniform solutions describe unlocked
oscillations.
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Fig. 1. (a) A pair of saddle-node bifurcation diagrams showing the appearance of the four
stationary phase solutions of Eq. (5a) as the forcing amplituidancreased pasy, for a

fixed detuning value.. The solid (dashed) curves represent stable (unstable) solutions. (b)
The resonance tongue in tlve plane (shaded region) inside which the original system
responds at exactly half the forcing frequency. Also shown is the NIB bifurcation threshold
(dotted curve) inside the resonance tongue, obtained by numerically solving the one dimen-
sional eigenvalue problem of Eq. (8) for a front solution of Eq. (2). The NIB bifurcation
threshold corresponds to a zero value of the largest real part of the eigekyahtenclud-

ing the zero eigenvalue associated with translation) as the two insetsskoW,18. Above

the NIB bifurcation threshold fronts bi-asymptotic to the two stable phase statesnd

¢+, are stationary. The points “D*(= 0.4, v = —0.3) and “T" (y = 0.4, v = —0.38)
represent forcing and detuning values where the Ising fronts are stable and unstable to NIB
bifurcation, respectively. Parameters= 0.5, 3 = 0, a = 0.5.

For the analysis that follows we rewrite EqQ. (2) in terms of the real and imaginary
parts of the amplitudd/ := Re A andV := Im A:

o,U U
=N , (6)
o,V vV



where/ is the linear operator

e (p+7)+V?: —v—aV?

v+aV?:  (p—7)+ V?

and\ includes the nonlinear terms

1 -3

N = (U +V?) .

3 Spatial patterns inside the 2:1 resonance tongue

Inside the 2:1 resonance tongue the system is bistable and front solutions, bi-
asymptotic to the two stable phase states, exist. Patterns in bistable systems are
strongly affected by two types of front instabilities [28,29]. The first is the Nonequi-
librium Ising Bloch (NIB) bifurcation in which a stationary “Ising” front solution
loses stability to a pair of counter-propagating “Bloch” front solutions. This insta-
bility designates a transition from stationary patterns to traveling waves. The second
front instability is a transverse instability (occasionally also referred to as modula-
tional or morphological instability) where wiggles along the front line grow in time.

A transverse front instability of an Ising front often leads to stationary labyrinthine
patterns. In the context of forced oscillations the NIB bifurcation has been studied
in Refs. [7,30-33] and the transverse instability in Ref. [17]. In the following we
extend these earlier works and use the results to delineate the range within the 2:1
resonance tongue where resonant patterns reside.

Finite wave-number instabilities of the uniform phase states may also lead to pat-
tern formation inside the 2:1 resonance tongue. A linear stability analysis of the
phase states indeed reveals such an instability but in a very narrow range near the
2:1 resonance boundary. The instability leads to large amplitude stationary pat-
terns representing resonant oscillations of the original system. For further details
the reader is referred to Ref. [27]. In the following analyzes performed inside the
tongue we assume a parameter range for which the phase states are stable to nonuni-
form perturbations.

3.1 The Nonequilibrium Ising Bloch (NIB) bifurcation

Inthe caseq = 3 = 0, the NIB bifurcation occurs aty;z = /v + (1/3)? [32,33].
To evaluate the NIB bifurcation across the resonance tongue for nonxzer®



values we use a numerical eigenvalue analysis of the Ising front solL{tionIn-
serting the form

U(z,t)
V(x,t)

=1I(z) + e(x)e™, (7)

in Eq. (6) and linearizing arountiz) we obtain
[J(U, V)= X]e=0, (8)

where J(U, V) is the Jacobian of Eq. (6) &fx), \ is the eigenvalueg(z) is the
eigenvector? is the identity matrix, and the form dfx) is obtained by numerical
integration of Eq. (6). Solving (8) fok we identify the NIB bifurcation threshold

as the valuey = ~y;5(v) at which the largest real part of the eigenvaliés

zero (excluding the zero eigenvalue associated with the translation mode). The NIB
bifurcation threshold in the — ~ plane and forv > 0 is shown in Fig. 1(b).

For~, < v < 7n1p Spiral waves prevail. Figure 2 shows numerical solutions of
Eqg. (6) in this range displaying the development of rotating spiral waves starting
from random perturbations of the unstable rest state 0. Since the amplitudel
oscillates at the spiral frequency, the original system [see Eq. (1)] oscillates at a
frequencyw; /2 + w, rather thanu; /2 and therefore is out of resonance.

As the NIB bifurcation is traversed stationary Ising fronts appear. The same ran-
dom perturbations of the unstable rest state (as in Fig. 2) now lead to coarsening
and to the formation of larger domain patterns as Fig. 3 shows. Since the domain
boundaries approach stationary planar Ising fronts the patterns represent resonant
oscillations. We now turn over to the high frequency side of the 2:1 resonance
tongue.

3.2 Transverse instability of the Ising front

As v is increased, and the high frequency boundary of the 2:1 resonance tongue
is approached, a transverse front instability is encountered [17,20]. The onset of
this instability,y = vr (v > ~vn18), IS shown by the dashed line in Fig. 4. The
significance of the transverse front instability is demonstrated in Fig. 5; a planar
Ising front evolves to a labyrinthine pattern through fingering and tip splitting. The
asymptotic pattern is stationary and therefore represents resonant oscillations.

We evaluated the transverse instability boundary by deriving a linear evolution
equation for transverse front modulations as we now describe. Equation (6), for
a = (= 0 (but arbitraryv), has the exact Ising front solution
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Fig. 2. A numerical solution of Eq. (6) in the rangge< v < ynrs [point “T” in Fig. 1(b)],
showing the development of spiral waves from small random perturbations around the un-
stable rest statd/ = V = 0. The pattern corresponds to unlocked spiral waves in the
original system since» # wy/2. The frames (a)-(f) show a grey-scale map of théeld

at successive time steps= 1.5, 8.5, 19, 90, 2000, 6000. In all of the gray-scale figures
darker hues denote highErvalues. Neumann boundary conditions were used on a domain
x = [0,80], y = [0, 80]. Parameters are as in Fig. 1(b)= —0.38, v = 0.4.

Up=1(x)cos ¢, (9a)
Vo=1(z)sing, (9b)

wheregp = 1/2arccos (7/7), ¥ = v/7? — v?, andI(x) is given by

I(z) = +/pi + 7 tanh “g% (10)

Fora ~ [ ~ ¢ < 1, wheree is an auxiliary small parameter, we expand the
solution of Eq. (6) around Eq. (9) as follows:

U(:Ea Y, t) = UO(X) + 6[]1(X) =+ 62U2(X) + .. ) (113)
Vi(z,y,t) =Vo(x) + eVilx) + €Va(x) + - - -, (11b)

wherex = = — A(Y, T3, T5,...) is the longitudinal spatial coordinate in a frame
centered at the front position, = A(Y, T3, Ts,...), Y = /ey is the transverse
spatial coordinate scaled to describe weak dependencé; and't (i = 1,2,...)

are slow time coordinates. In terms of these coordinates partial derivatives in Eq. (6)



Fig. 3. A numerical solution of Eq. (6) in the range s < ~ [point “D” in Fig. 1(b)]
showing the coarsening of small domains into larger ones separated by a planar Ising front.
The asymptotic state is resonant since the Ising front is stationary and any point in the
original system it oscillates at exactly = w;/2. The frames (a)-(f) show th& field at
successive time steps:= 1.5, 8.5, 19, 90, 350, 850. Neumann boundary conditions
were used on a domain= [0, 80], y = [0, 80]. Parameters are as in Fig. 1(b)= —0.3,

v =04.

take the forms
ay = \/an,
Oy = €0p, + €20, + ... .

(12)

Inserting Eqgs. (11) in EqQ. (6) and considering small transverse perturbations,
we obtain at ordes

M Uy _ J1 , (13)

Vi fa
where 1o = f12(Uo, Vi, 0y; v, ) are odd functions of¢ and M is the linear
operator

M _ Hl 2U0% + v ’
2U0VE) — UV HQ
with
Hi=—(u+7) — 02+ 3U2 +VZE,

Ho=—(p—ry)— 02+ 3VE+Us.
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Fig. 4. The transverse instability ling,= ~p, for an Ising front inside the 2:1 resonance
tongue. The dashed line denotes the approximate analytical resyltgiwen by Eq. (24).
The crosse$x) depict the conditionD = 0 where D is calculated semi-analytically us-
ing Eqg. (20), while the solid circleg) represent results of a numerical two-dimensional
eigenvalue analysis of the Ising front. Parametgrs: 0.5, a = 0.35, 6 = 0.

Solvability of Eq. (13) requires the right hand side of this equation to be orthog-
onal to the null vectoE of M, the adjoint of M. We evaluated& numerically

and found it to be an even function gf Since f; and f, are odd functions of

the solvability condition is automatically satisfied. For the same re&ls@ndV;

must be odd too (i.e. they preserve the symmetry of the zero order approximation,
U, Vo).

Proceeding to ordef we find

U 81A—82A Ul +
M 2| _ (T Y ) 0T g1 7 (14)
Vy (O, A — M)V + 9o

where the prime denotes derivation with respect to the argument and
912 = 912Uy, Vo, U1, V1,0, v, B)
are odd functions of. Solvability of Eq. (14) leads to
O, A = 0%A. (15)

Using Eq. (15) in Eq. (14) we conclude that andV; are again odd functions of
x (i.e. preserve the symmetry of the lower order approximations).



(a) (b) (c)

(d)

Fig. 5. A numerical solution of Eq. (6) in the rangg < v < ~r (point “L" in Fig. 4),
showing the development of a stationary labyrinthine pattern from a transverse insta-
bility of a planar Ising front. The pattern corresponds to resonant labyrinthine standing
waves in the original system. The frames (a-f) showlthéield at successive time steps:

t =0, 150, 250, 400, 600, 1400. Neumann boundary conditions were used on a domain
x =10,77], y = [0, 77]. Parameters: = 2.0, v = 2.05, and other parameters as in Fig. 4.

Proceeding to orde# we find

M Us| _ Or, AUG + a (03 M) Vi + (Oy A)* UJ + Iy | (16)
Vs O, AVy — a (O N) Ug + (9y A V' + by

where
hl,2 = hl72(U07 ‘/07 Ul7 ‘/17 U27 ‘/Qa 8X7 a, ﬁ)

are odd functions of. Solvability of Eq. (16), yields
O, A = —aX02 A, (17)

where

J (EdVy — EUg)dx
D= : (18)
J (E1Up + E2Vg)dx

and=; and=, are the components of the null vecEBrInserting Eqgs. (15) and (17)
in Eqg. (12) we obtain

O\ = DOZA, (19)

10



where
D=1-aX. (20)
The sign ofD determines the stability of the Ising front to transverse perturbations;

the front is stable (unstable) whén > 0 (D < 0) and the conditiorD = 0 gives
the instability threshold = ~.

To evaluate this threshold we need to calculate the integrals in Eq. (18) which we
first do numerically. The calculation yields the solid circles in Fig. 4, which are in
good agreement with the results of a numerical two dimensional eigenvalue analy-
sis of the Ising front marked in Fig. 4 by crosses.

An approximate analytical expression fgr can be obtained if we restrict ourselves
to the high edge regime of the 2:1 tongue boundary [32} < 1, and to the
vicinity of the Hopf bifurcationy /vy < 1. Under these conditions

H1 —V
YARS , (21)
1% Hz
and
El ~ U(/J, EQ ~ _VEJ, (22)

Inserting Eqg. (22) in Eq. (18) we obtain

[09%

Dx~1— ——n0u—. 23
N )

The threshold of the transverse instability= 0, now becomes
yr 2 vV1+a?. (24)

where the producta is assumed to be positive. We found a good agreement be-
tween the analytical approximation (24)gf and the two-dimensional eigenvalue
analysis of the Ising front for smail/y as shown in Fig. 4 and for small values

as presented in Fig. 6.

4 Spatial patterns outside the 2:1 resonance tongue

In the previous section we related resonant patterns, within the 2:1 resonance tongue,
to the existence of Ising fronts. The patterns take the form of large stationary do-
mains, possibly coexisting with stripe patterns, in the range where the Ising front is
transversely stable, and appear as labyrinths beyond the transverse front instability.
Surprisingly, these resonant labyrinthine patterns persist outside the 2:1 resonance
tongue ¢ < ~,) where Ising front solutions no longer exist [16,20]. Figure 7 shows
how an asymptotic stationary labyrinthine pattern develops outside the resonance

11



0 0.1 02 03 04 05

o
Fig. 6. The transverse instability thresholgy, as a function ofa. The solid
curve represents the approximation ¢f given by Eq. (24) and the crosses de-

note results of the two-dimensional eigenvalue analysis of the Ising front. Parameters:
=05 v=2 pg=0.

tongue. The asymptotic pattern is very similar to that obtained inside the 2:1 reso-
nance tongue (see Fig. 5). The formation mechanism, however, is different; initial
nuclei expand through successive stripe by stripe growth into the surrounding un-
locked oscillations.

In this section we investigate the conditions and mechanisms that give rise to sta-
tionary solutions of Eq. (6), or resonant patterns of the original system, outside the
2:1 resonance tongue. We further study their existence range and their stability to
secondary instabilities such as zigzag. We find two different realizations of station-

ary patterns outside the 2:1 tongue: (i) the stationary patterns coexist with stable
unlocked uniform oscillations, (ii) the stationary patterns are the only attractor.

In Ref. [20] we identified a codimension 2 point where the Hopf bifurcation to
uniform oscillations coincides with a finite wavenumber instability of the= 0

rest state. In the following we show, using a weakly nonlinear analysis, how the
two realizations of resonant standing waves outside the 2:1 tongue relate to the
coupling between a Hopf modé, = 0,w, # 0) and a finite-wavenumber Turing
mode(ky # 0,wp = 0). We further show that these standing waves are unstable to
zigzag perturbations as Fig. 15 indicates. With appropriate initial conditions they
may appear indistinguishable from the labyrinthine patterns inside the 2:1 tongue.

We begin with a linear stability analysis of the rest staté,l’) = (0, 0), to inho-
mogeneous perturbations of the form

U .
— Uk eot-l-zka: ) (25)
%4 Vi

12



Fig. 7. A numerical solution of Eq. (6) in the range < ~, (but sufficiently close to

), showing the gradual nucleation of a stationary pattern from uniform oscillations os-
cillations. The uniform oscillations correspond, in the original system, to unlocked os-
cillations while the asymptotic stationary pattern corresponds to resonant labyrinthine
standing waves. Note that the resonant labyrinthine pattern exists in a range where uni-
form oscillations are not resonant. The frames (a)-(f) showlhéeld at successive

time stepst = 0, 4, 8, 13, 18, 1400. Neumann boundary conditions were used on a

x =1[0,77], y = [0, 77] physical grid. Parameterg:= 0.5, v = 2.0, « = 0.5, = 0and

v = 1.95.

Inserting this form in Eq. (6) we obtain the dispersion relation

o(k) = pu— k> + /72 — (v — ak?)?. (26)

At the codimension 2 poiny = 0, v = ., where
14

e = Vi+a?’

the Hopf ¢ = 0, w = wp) and the Turingk = ko, w = 0) modes simultaneously
become marginal as Fig. 8 shows. The wavenunipeand the frequency, are
given by

(27)

ra

ko = TTa2 (28a)
146

13



Note that if we restrict ourselves to the high frequency edge of the 2:1 tongue
(v > 0) we must chooser > 0. Also, if we want the codimension 2 point to lie
outside the 2:1 tongue we have to chogse: « for at 5 = « the Turing mode
becomes marginal at the tongue boundarypi.e= 7.

0.5

Hopf | Turin g
mode mode

0 ok L5

Fig. 8. The growth rate (real part o)) of perturbations around thé = 0 state at the codi-
mension 2 pointy = 0, v = 7.. Two modes become marginal at this point, a Hopf zero-
mode and a Turing finité-mode. Parameterg.= 0, v = 2.0, = 0.5, v = 7. ~ 1.8.

4.1 Amplitude equations for the Hopf-Turing bifurcation

In the vicinity of the codimension 2 point, whetle:= v — . ~ u < 1, we can
expand solutions of Eq. (6) as

U U, U U-
—va| | T (29)
1% Vo Vi Vo
where
Uy . .
= eoBpe™" + e Bre'"™" + c.c.. (30)
Vo

We assume thad := d/u and~,. are of order unity. The complex amplitudes

By (X,Y1,T)andBy (X, Y3, T) in Eq. (30) describe weak spatiotemporal modula-
tions of the (relatively) fast oscillations associated with the Hopf mode and of the
strong spatial variations associated with the Turing mode. The weak dependence is
expressed by the introduction of the slow varialiles: uit, X = \/uz, Y, = /1y

andY, = p'/4y. The different scales used for thpeoordinate stem from the differ-

ent states (uniform vs. stripes) the amplitudes modulate [34—36]. The eigenvectors
e andey correspond to the eigenvaluef)) ando (&), respectively, and are given

14



o _ (1+ia)/p o |7
0 1 ) k 1 )

wherep = /1 + o2 andn = a + p.

Inserting the expansion (29) in Eq. (6) we obtain at oyder

M (Ul) = — (20x0, + 3%, (UOO‘VO) , (31)

Vi aly + Vo

where

—O 4+ 7. +02 —v—ad?
M =
v+ad: =0 — .+ 0?

Defining an inner product as

o ]
= dXdT 32
(f,9) 2n)? fg : (32)
where the integrals are evaluated over the temporal oscillation period and over the
stripe wavelength, the adjoint operator is

Oy +7e+ 02 v+ ad?

M = (33)

—v—ad? O —.+0?

and its null vector is

= ((1 +'L(l/)/p) 6—iw0t+ ( 1 ) e—ikom' (34)
1 a—p

The solvability condition associated with Eq. (31) is automatically satisfied and we
can proceed to solving this equation. We find

RN PR
=C + DBpe™* 4+ c.c. p . (35)
Vi Vo 03/

whereD = 2iko0x + 8%}2 and(' is an arbitrary constant which for simplicity we
set to zero.
Proceeding to ordgr®/? we obtain

M(Uz) <No£o>(U°) £1<Ul), (36)
Va Vo Vi

15



where

1+d+0%—dr —ad%
0 — ~ )
ad% 1—d+ 0% —or
1 —
M=z L7
g1
1l —«
Ly = (20x0, + 0% :
a 1

Solvability of Eq. (36) yields two coupled equations for the amplituBgand By :

1 . .
Oy By — ( ad) By — (4+ imn)| Bo*Bo — (87 + im»)|Be|>Bo  (37)

+(1 + ip) (83( + 852/1) By,

orBi=(1+2d) B~ 6 (1 - ) |By*By, - (2 - 3§> B[ By
_r (2ikodx + 33,)” By (37b)
22 Y2 ’
where

my =2 (2p* +1) B/ap,
my = 42ap(a+1) + (3p + a)|f/a — 4n.

Finally, by rescaling Egs. (37) back to the relatively fast space-time scales we obtain
the following approximation to Eq. (6) in the vicinity of the codimension 2 point:

U - ‘k
= egApe™® + e Ae™ +cc. + ... (38)
V

where the ellipses denote high order corrections and the amplitdglasd A,
satisfy

1o = (10 = £) Ao = (4-+ ima)| Ao o = (Spn -+ i) 4P A

(1 p)v2A0 ) (39a)
o= i+ £d) Ay~ 601 (1 - ) AP AL — 4 (2— ﬁ) Aol Ay

5 3(2@1@0 +a) (39b)

16



4.2 Hopfand Turing pure-mode solutions

Equations (39) admit two families of pure-mode solutions and a mixed-mode solu-
tion [37,38]. The pure-mode solutions are

~ 1 . . ~
Ay = 5 /i — K2 (Ko=9t)+ito LAy =0; (40a)
and
~ ~ —2ap2K? . )
AO _ 0’ Ak; _ op+ dp ap 61K:v+zwk . (40b)
6pn(e — )

The phases), andy, are arbitrary constants which we set to zero énd d/a +

wmy /4. In the context of the original system, the uniform-oscillation solution (40a)
corresponds to unlocked uniform oscillations, while the stationary uniform solu-
tion (40b) represents resonant standing -waves.

We first study the linear stability of the uniforfd = 0) solutions (40a) and (40b)
by reducing the system (39) to equations for the absolute values of the amplitudes
Ao and Ay, [39]:

Ry = Ry — 4R} — 8pnR2 Ry ,

. (41)
Ry, = (p+d/a) Ry — 6pn(1 — B/a) R} — 4(2 — 33/a) Ry Ry,

whereR, := |Ao| and Ry, := | Ax|. Figure 9 shows bifurcation diagrams for the uni-
form oscillatory and stationary solutions (40a) and (40b) as obtained by analyzing
Egs. (41). The stationary solution (40b) exists abgveshere

Lo vV — o

e = Ve — = ) 42
T T Ara Vit (42)
and becomes stable at= ~s where

pla+38) v—pla+38)/4 “3)

7S:%_élx/l%—cﬂ— V14 a2

The oscillatory solution (40a) exists for all< +, (providedu > 0) but the stability
of this solution depends on the value®fFor 5 < (g, whereiy is defined below,
the oscillatory solution is stable up to the tongue boundagy-,. For3 > (g the
stability range of (40a) reducesto< vy whereyy is smaller thany, and is given
by
. Ma=38)  vtpla—3p)
=T T AR Vita?

(44)
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The value of5z is determined by the condition; = ~y, which leads to the follow-
ing quartic equation fofz:

v+ p(a = 36p)]y/1+ 8% — [v — uBplvV1 +a? = 0. (45)

The mixed mode solution and its stability properties will be studied elsewhere [40].
We only note here that this solution is unstable as longsas s which is realized

for 5 < By where

A (46)

9
Using these results we can distinguish among three stability ranggs far 3 <

B

(i) v < ~s, where only the oscillatory solution (40a) is stable;
>i) v < v < %, Wwhere only the stationary solution (40b) is stable;
(>ii) vs < v < vu, where both solutions (40) are stable.

Wheng < (g the range (ii) disappears and the bistability range (iii) extends to the
tongue boundary = ;.

(a) Hopf (A0 (b) ‘ Hopf (A,0)
Mixed Mixed
(on Ak)>—"— (AO’ Ak )\/:¢’
R “ R ’
T Turing T ;%Tring)
0,4) k
0y Y v, % Y v Y
e Y's b e s v H b

Fig. 9. Bifurcation diagrams for uniform solutions of Eq. (39) showing the existence and
stability ranges of the two pure mode solutions and the mixed mode solution in a forcing
range extending to the tongue boundary- ~,. The vertical axis iR = \/ RZ + R3. The

solid (dashed) curves denote stable (unstable) solutions. [h €z and the oscillatory
solution (4, 0) is stable up to the tongue boundary. In (b)> (5 and the oscillatory
solution loses stability af = vy < ~v,. Parametersz = 0.5,v = 2,a = 0.5, (@) 8 = 0,

and (b)s = 0.1.

To test the amplitude equations (39) we compared the prediction of Eq. (43) for
(the instability threshold for stationary stripes) with numerical solutions of Eq. (6).
Figure 10 indicates a good agreementfoalues of order unity. A deviation devel-
ops at smalb values, but whew ~ i, B;, varies on the scale;* and the analysis

is no longer valid.
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Fig. 10. The stability thresholgg for resonant standing-wave solutions. The solid line
describes Eq. (43) while the solid circles represent results of numerical solutions of Eq. (6).
The parameter values are the same as in Fig. 4.

4.3 Hopf-Turing competition

Using the stability results described above we can distinguish between two different
realizations of resonant standing waves (of the original system) outside the 2:1
tongue boundary. Whefi > (3 there is a range just below the tongue boundary,

vag < v < %, where unlocked uniform oscillations are unstable and resonant
standing waves are the only stable state. In this case, resonant behavior develops no
matter what the initial conditions are. Whgn< [z resonant standing waves and
unlocked oscillations coexist as stable states in a range, v < v, extending up

to the tongue boundary. In this case the realization of resonant behavior depends on
initial conditions.

To gain some insight about the initial conditions that lead to resonant behavior in
the cases < (5 we consider front solutions of Eg. (39) which are bi-asymptotic to
the two coexisting statesl,, 0) and(0, A;). The direction of the front propagation
determines which of the two states invades into the other and prevails at long times.
We therefore look for the threshold value= ~, at which the Hopf—Turing front

has a zero velocity. An analytical expression for the Hopf—Turing front velocity has
been found in Ref. [41]. Using this result we find

po(y3/2—1) _v+paly32-1) )

=Y.+
T V1+a? V1+a?

Figure 11 shows the lingy in therv — ~ plane, as obtained from Eq. (47) and the
the good agreement of this result with numerical solutions of Eq. (39)y Eoryy

the (0, A;) state invades the4d,, 0) state as Fig. 12 demonstrates. This dominance
of the (O,[lk) state implies that any initial state involving at least one island of
resonant standing waves is likely to evolve into a resonant standing-wave pattern
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occupying the whole system. For< ~y the (A, 0) state is the dominant one and
the asymptotic state is unlocked oscillations.

1

084 | v | ]

Fig. 11. Dominance range of resonant standing waves outside the 2:1 resonance tongue for
B < Bp. Foryn < v < 7, standing waves0, A;,), invade unlocked oscillation$Ay, 0),

and become the asymptotic pattern (see Fig. 12). The solid/liaeyy describes Eq. (47)

while the solid circles represent results of numerical solutions of Eq. (39). Parameter values

are the same as in Fig. 4.

X

Fig. 12. Invasion of resonant standing waves into unlocked oscillations, obtained by nu-
merical integration of Eq. (39) in the rang& < v < 7. The solution represents the real

part of (Uy, V) reconstructed according to Eq. (30). Neumann boundary conditions were
used. This behavior reproduces the results of Fig. 7 obtained by solving Eg. (6) with the

same parameter values.
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Returning to Fig. 7 which shows the development of standing-wave patterns out-
side the 2:1 tongue we can now interpret the stripe by stripe growth mechanism as
an invasion of thg0, A,) state (standing waves) into tlid,, 0) (unlocked oscil-
lations). Fig. 7 applies to the cage< (35 where the two states stably coexist and
toy > yn. Whengs > (g similar stripe by stripe growth can be realized, but un-
like the former case, standing waves develop from any initial condition even in the
absence of an initial0, A,) island that serves as a nucleation center. The growth
mechanism of standing wave patterns outside the 2:1 tongue is very different from
the fingering and tip splitting mechanism that applies inside the tongue [see Fig. 5].
The asymptotic patterns, however, may look very similar as a comparison of Fig. 5
and Fig. 7 suggests. This is partly because the standing wave stripes are unstable to
zigzag perturbations as we now show.

4.4 Zigzag instability of the pure Turing mode

Consider the stationary periodic stripe solution given by Eq (40b). To study the
stability of this solution to zigzag perturbations [36], we write

= |+ , (48)
Ay Ay 5 Ay

5A0 _ ap+ (t) ei(KI_;,_Qy) + CZS_ (t)

(SAk ak+(t) aZ— (t)
Inserting Eq. (48) in Eq. (39), and linearizing arouiidA;) we obtain two sets of
ordinary differential equations

where

pi(K2—Qy).

dO:I: = [M—WP—Q2—iM]a0i,

, (49)
ak:t = — |:P+ ;Tg (4]{,’0KQ2 _I_Q4):| A+ — Pak;:':,

whereP =y + pd/a — 2p°K?, W = 4a/[3(ac — B)] andM = d/ov + mo| Ay +
p(K? + Q?). Seeking solutions of Eq. (49) in the form

ags = o™, (50a)
s = Q€™ (50b)

we find the following expressions for the perturbation growth rates:
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Re\f=p— WP —Q? (51a)

2

M= (4 KQP +QY) — P+ P. (51b)
2kg

The first mode to grow is the Turing phase mode whose growth rate is given by

A (Q). The long-wavelength zigzag instability sets infat= 0 and exists any-

where in the parameter ranges we consider (for which 0 andva > 0). Fig-

ure 13 shows the dispersion relatidh(Q) at the onsefX’ = 0 and beyond the in-

stability X' < 0. The maximal growth rate beyond the instability occur@at Q)

where

Q2 = -2k K. (52)
Figure 14 summarizes the results of the linear stability analysis of stationary stripe
0.01
+
A k
0
~0.01 -

0 o % 04

Fig. 13. Growth curves for the zigzag instability of the stationary-stripe solution Eq. (40b).
Shown are the growth rate>e,j, as computed from Eq. (51b), at the instability threshold
K = 0 (dashed curve) and beyond the instabilify= —0.05 (solid curve). Other parame-
tersiv = 2.0, =0.5.

solutions (standing waves in the original system) inthe K parameter space.
The periodic stripe solutions (40b) form at the parabolic dashed curve given by

Ve = 7Ye + 20pK”. (53)
Below the solid parabolic curve, = 75, where
Y5 =75 + 2apK? . (54)

the stripe solutions are unstable to uniform oscillations or traveling waves >

0). Above this curve stationary stripe patterns become stable but may go through
secondary zigzag and Eckhaus instabilities as depicted in the figure. (The Eckhaus
instability analysis will be presented elsewhere [27]). Numerical solutions of the
forced CGL equation (6) support the above predictions. The stripes are stable for
positive K values (that do not cross the Eckhaus instability) while for negdtive
values (see point “Z” in Fig. 14) the stripes are unstable to zigzag perturbations
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as Fig. 15 demonstrates. Asis reduced belows (see point “O” in Fig. 14) the
stationary stripes loose stability to oscillations, as Fig. 16 demonstrates.

2‘\' ) ’Yb
v
Yo zig—zag
\\\ | rYC
ly,
1.6} oS Cll [ q:szi/ol ns Jy
-0.6 -02 0 K 0.6°¢

Fig. 14. The neutral stability curve for stationary stripes (thick solid curve) and their sec-
ondary zigzag and Eckhaus instabilities (thin solid curves). Stationary stripe solutions ap-
pear at the dashed parabolic curve but becomes stable only above the solid parabolic curve.
In between the two curves uniform oscillations and traveling waves prevail. The points
“Z" (v = 1.95, K = —0.2) and “O” (y = 1.77, K = —0.2) represent forcing and
wavenumber values where the stripe solutions are unstable to zigzag and oscillating pat-
terns, respectively. All the other parameters are the same as in Fig. 7.

Fig. 15. Numerical solution of the forced CGL equation (6) for negative deviations from
ko (K = —0.2), showing the development of a zig—zag pattern (point “Z” in Fig. 14). The
frames (left to right) correspond to= 1,300,400. Periodic boundary conditions were
used on a = y = [0, 51] physical grid. Parameters are as in Figure/34 2, v = 1.95.
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Fig. 16. Numerical solution of the forced CGL equation (6) for negative deviations&som
(K = —0.2), showing in a space-time plot the development of oscillations (point “O” in
Fig. 14). Neumann boundary conditions were used. Parameters are as in Figure 24,

v = 1.77, x = [0, 64] andt = [0, 60].

5 Discussion

We have presented a theoretical study of resonant patterns in oscillatory systems
that are subjected to uniform time-periodic forcing at a frequency about twice as
large as the unforced system’s frequency. The study is based on the amplitude equa-
tion for forced systems undergoing a Hopf bifurcation to uniform oscillations. Res-
onant patterns are defined in this paper as spatiotemporal patterns where the oscil-
lation frequency at any spatial point is exactly half the forcing frequency.

We find that the range of resonant patterns in the forcing amplitude and frequency
v—- plane does not coincide with the 2:1 resonance tongue of uniform oscillations.
Below the NIB bifurcation, non-resonant traveling waves prevail. Above the NIB
bifurcation resonant standing waves prevail, but these extend beyond the tongue of
uniform oscillations. Fog > (g there exists a rangey < v < 7, outside the

2:1 tongue where resonant standing waves are the only stable patteras<FHéy
resonant standing waves outside the 2:1 tongue coexist with unlocked oscillations.
In the rangeyy < v < 7, however, the standing-wave patterns are dominant in the
sense that nuclei of standing waves grow into unlocked oscillations and become the
asymptotic state of the system.

Figure 17 summarizes the regions in they plane where resonant patterns prevail
along with the 2:1 tongue inside which frequency-locked uniform oscillations exist.
The boundaryy = vy, inside the 2:1 tongue, appears to merge with the line
v = vy outside the 2:1 tongue and form together the boundary of the region of
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resonant patterns. More careful analysis is needed, however, to substantiate this
numerical observation.

" Frequency locked
patterns

Fig. 17. The 2:1 resonance tongue of uniform oscillations (the dashed boundary) vs. the
tongue of resonant patterns (the shaded area with solid boundary). Parameters are as in
Fig. 1(b).

The resonant standing waves outside the tongue are zigzag unstable and may appear
as labyrinthine patterns with appropriate initial conditions [20]. These labyrinths
appear indistinguishable from the labyrinths that prevail inside the 2:1 tongue.
Their formation mechanism however is quite distinct. While labyrinths inside the
tongue develop from a transverse front instability through fingering and tip split-
ting (see Fig. 5), labyrinths outside the tongue develop through stripe by stripe
nucleation from standing-wave nuclei (see Fig. 7). The two mechanisms have been
identified recently in experiments on the Belousov-Zhabotinsky reaction [20].

The results described in this paper are restricted to a relatively small volume in
the parameter space spanned;by, «, 3,~. The analysis is based on the forced
complex Ginzburg-Landau equation which is valid close to the Hopf bifurcation.
We therefore avoided largevalues. The study was originally motivated by exper-
imental observations of resonance labyrinthine patterns on the high right edge of
the 2:1 resonant tongue [12]. Accordingly we chode be positive and following

Eq. (28),a > 0. We also chose and/ to be small (and of the same order of magni-
tude) to facilitate the analysis of the transverse Ising front instability. We confined
ourselves to the case < 5«/9 for which resonant standing waves exist outside
the 2:1 resonance tongue. The case 5a/9 will be considered elsewhere [40].
Different parameter ranges have been studied in Refs. [16;42] ([, « < 0), and

in Ref. [17] (@ > (§ ~ ).
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